منابع مشابه
Reconciling positional and nominal binding
We define an extension of the simply-typed lambda-calculus where two different binding mechanisms, by position and by name, nicely coexist. In the former, as in standard lambda-calculus, the matching between parameter and argument is done on a positional basis, hence α-equivalence holds, whereas in the latter it is done on a nominal basis. The two mechanisms also respectively correspond to stat...
متن کاملBinding in Nominal Equational Logic
Many formal systems, particularly in computer science, may be expressed through equations modulated by assertions regarding the ‘freshness of names’. It is the presence of binding operators that make such structure non-trivial. Clouston and Pitts’s Nominal Equational Logic presented a formalism for this style of reasoning in which support for name binding was implicit. This paper extends this l...
متن کاملBinding Operators for Nominal Sets
The theory of nominal sets is a rich mathematical framework for studying syntax and variable binding. Within it, we can describe several binding disciplines and derive convenient reasoning principles that are compatible with u�-equivalence. In this article, we introduce the notion of binding operator, a novel construction on nominal sets that unifies and generalizes the many forms of binding pr...
متن کاملNominal Automata with Name Binding
Nominal sets are a convenient setting for languages over infinite alphabets, i.e. data languages. We introduce an automaton model over nominal sets, regular nondeterministic nominal automata (RNNA), which have a natural coalgebraic definition using abstraction sets to capture transitions that read a fresh letter from the input word. We prove a Kleene theorem for RNNAs w.r.t. a simple expression...
متن کاملNominal Logic: A First Order Theory of Names and Binding
This paper formalises within first-order logic some common practices in computer science to do with representing and reasoning about syntactical structures involving lexically scoped binding constructs. It introduces Nominal Logic, a version of first-order many-sorted logic with equality containing primitives for renaming via name-swapping, for freshness of names, and for name-binding. Its axio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2013
ISSN: 2075-2180
DOI: 10.4204/eptcs.121.6